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We describe the problem of the equivalence of ensembles at the level of states 
for classical lattice systems. We discuss circumstances where the vanishing of the 
specific information gain of a sequence of microcanonical measures with respect 
to a sequence of grand canonical measures implies the equivalence of ensembles. 
We give a simple derivation of a criterion for the vanishing of the specific infor- 
mation gain in terms of thermodynamic functions. The proof uses ideas from the 
theory of large deviations but is self-contained. We show how the criterion 
works in a simple model of a paramagnet and in the Ising model of a 
ferromagnet in any dimension but fails in the case of the Curie-Weiss mean-field 
model. 
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1. I N T R O D U C T I O N  

M a r k  K a c  was  fond  of  s a y i n g  t h a t  n o  t h e o r y  is b e t t e r  t h a n  its bes t  example .  

O l i v e r  P e n r o s e  w o u l d  sure ly  e c h o  this  s e n t i m e n t .  He a s k e d  us for  s o m e  

e x a m p l e s  to  i l lus t ra te  a t h e o r e m  o n  the  e q u i v a l e n c e  o f  ensembles~lgl ;  we 

offer t h e m  to h im,  a p i o n e e r  o f  r i g o r o u s  resu l t s  in s ta t i s t ica l  m e c h a n i c s  w h o  

ha s  n e v e r  lost  t o u c h  wi th  the  phys ica l  r o o t s  of  the  subjec t ,  on  the  o c c a s i o n  

o f  his  65 th  b i r t h d a y .  

Dublin Institute for Advanced Studies, Dublin 4, Ireland. 
-" D~partement de Math6matiques, CH-1015 Lausanne Switzerland. 

Department of Mathematics, University College. Belfield, Dublin 4, Ireland. 

397 

00__-471./94,.'1000-0. 97507.00/0 ,!!. 1994 Plenum Publishing Corporation 



398 Lewis et  al.  

The concept  of the equivalence of ensembles goes back to Gibbs, ~ 
whose development  of statistical mechanics as ' the rat ional  foundat ion of 
thermodynamics '  is based on the canonical  dis tr ibut ion.  In Chapters  X and 
XIV, he discusses the microcanonical  dis t r ibut ion:  

From a certain point of view, the microcanonicaI distribution may seem 
more simple than the canonical, and it has perhaps been more studied, and been 
regarded as more closely related to the fundamental notions of thermodynamics. 
To this last point we shall return in a subsequent chapter. It is sufficient here 
to remark that analytically the canonical distribution is much more manageable 
than the microcanonical. (Ref. 11, Chapter X, p. 116.) 

As a general theorem, the conclusion may be expressed in the words: If a 
system of a great number of degrees of freedom is microcanonically distributed 
in phase, any very small part of it may be regarded as canonically distributed. 
(Ref. 11, Chapter XIV, p. 183.) 

Since Gibbs '  time, many proofs have been offered of this 'general  theorem. '  
Not  surprisingly, the case of noninteract ing particles has received the 
greatest  a t tent ion:  Khinchine 1~6~ in 1943 used a local central limit theorem 
to prove it for a classical ideal gas; a "bare-hands '  version of Khinchine 's  
argument ,  using Stirling's formula,  can be found in Mart in-L6f .  I-'-'~ There 
were many a t tempts  to extend this to interacting systems using extensions 
of the central limit theorem to sums of weakly dependent  r andom 
variables;  see Mazur  and van der Linden, ~24~ for example.  In 1977, 
Dobrush in  and Tirozzi tT~ proved that  the local central limit theorem is a 
consequence of the integral central  limit theorem in the case of a Gibbs  
random field corresponding to a finite-range potential ;  however,  their 
appl ica t ion  of it to prove the equivalence of ensembles runs into problems 
when there is a f irst-order phase transit ion.  

Typically,  local central  limit theorems hold on the scale of the square 
root  of the volume. The right scale for the invest igat ion of  the equivalence 
of ensembles, however, turns out to be that  of the volume itself; this is the 
scale on which large-deviat ion principles hold. Deuschel e ta l .  c4~ and 
Georgi i  18~ recently used a large-deviat ion principle for empirical  measures 
to prove the equivalence of ensembles. One drawback  with this approach  
is that it is technically difficult: since it involves measures on a space of 
measures,  there are subtle points  to be settled. Another  is that the connec-  
tion with the rmodynamic  functions is obscured. 

A more elementary and direct approach  ~9~ goes back to the common 
origin of  large-deviat ion theory and statistical mechanics,  the Principle of  
the Largest  Term, and proves a result about  the specific informat ion gain 
of a sequence of condi t ioned measures (microcanonical  ensembles)  with 
respect to a sequence of  til ted measures (grand canonical  ensembles).  This 
is a "'soft" t h e o r e m - - i t  uses nothing deeper  than the order-completeness  of 
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the reals, but it is widely applicable. For noninteracting systems, the equiv- 
alence of ensembles for measures then follows from the Kemperman-  
Pinsker inequality 1~5'25~ relating the information gain ~( /~ lv )  of /~ with 
respect to v to the total variation norm II'l[-rv of the difference of the two 
measures: 

For interacting systems, our "soft" theorem has to be supplemented by a 
"hard" theorem, proved using the combinatorial devices introduced in the 
early 1970s by Sullivan ~3~ and perfected by Preston~26~; using it together 
with the Kemperman-Pinsker  inequality, we prove that the vanishing of 
the specific information gain implies the equivalence of ensembles for a 
lattice gas with translational-invariant summable potentials. 

Csiszfir ~3) seems to have been the first to use the vanishing of the 
specific information gain to prove a conditional limit theorem and this was 
the starting point of Georgii's work referred to above. What is new about 
our work is that we give a simple condition, stated in terms of thermo- 
dynamic functions, which is sufficient to ensure the vanishing of the specific 
information gain. Roughly stated, our main result is: in the classical lattice 
gas, equivalence of  ensembles at the level of  states holds whenever it holds at 
the level o f  thermodynamic functions. The aim of this paper is to explain our 
condition for the vanishing of the specific information gain and to illustrate 
it with some simple examples and a counterexample. These are elementary: 
the paramagnet, and the Ising model in one and two dimensions provide 
the examples; the counterexample, where equivalence of ensembles fails at 
the level of thermodynamic functions, is provided by the Curie-Weiss 
model. 

In this Introduction, we have reviewed a small subset of the large body 
of work on the equivalence of ensembles, selected so as to set our work in 
context. To redress the balance a little, we mention another approach 
which is to be found in the works of Aizenmann etal., ~ Georgii, 19~ and 
Preston t27~ and which is closer in spirit, perhaps, to Gibbs' original 
argument than proofs which make use of probabilistic reasoning; in this 
approach one works directly with infinite-volume states, defining the 
microcanonical and canonical states by local specifications as in the theory 
of Gibbs states. In contrast with the approach based on large deviations, 
this method runs into difficulties in the case of classical continuous-spin 
systems. We mention also the approach sketched by Lanford t:~ and 
developed by Martin-L6f, ~23~ which is based on the Ruelle-Lanford func- 
tion (see Section4 for its definition), but which is less probabilistic in 
character than the proof we are about to describe, the main tools being 
convexity theory and the variational characterization of equilibrium states. 
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Here is the plan of the paper: In Section 2 we describe the models. In 
Section 3 we discuss the information gain and its use in proving the equiv- 
alence of ensembles and we begin the derivation of our criterion for the 
vanishing of the specific information gain. The expression we obtain for the 
specific information gain consists of three terms; the asymptot ic  behavior  of 
these is treated in the three succeeding sections: in Section 4 we define 
the Ruel le-Lanford function related to the thermodynamic  entropy; in 
Section 5 we discuss the concentrat ion of measures; we give a proof  of 
Varadhan 's  Theorem for compact  spaces in Section 6. The treatment  of all 
three topics relies on an abstract  version of the Principle of the Largest 
Term, Lemma 4.1. Our  criterion for the vanishing of the specific informa- 
tion gain is stated in Theorem 6.2; its application to the models is the 
subject of Section 7. In Section 8 we summarize our results. 

2. THE M O D E L S  

First, we set the notation: let 7] 'p (d>_-l) be an integer lattice, let 
{A,,},,>~l be an increasing sequence of cubes in 7] a with V, :=  IA,I ~ ~ as 
n--* co; at each site j e  A,, we have a configuration space S] which is a copy 
of the two-point  set S = { - I, + 1 }. For  each n >/1, the configuration space 
-(2, is the space 12,,=I-Ij~.+,, Sj which we regard as a subspace of the 
product  space f f 2 = l - ' ~ i ~ _ , t S i  ; equipped with the product  topology, the 
space s is compact .  The elementary random variables r  a, are 
defined by 

~j(m) = m(. j )  (2.1) 

They have the following interpretation in the models: r is the magnetic 
moment  at site j in the configuration o9. We define the magnetization M,  in 
A, by 

j e  ,I n 

and the pair &teraction energy U, in A, by 

(2.2) 

U,= - ~ ~.,~, (2.3) 
<i .  J ) '  c ,I,,  

where ( i , j )  denotes a pair of nearest neighbor sites. We define the 
following models: 

1. The Paramagnet." Let C be an open subinterval of X =  
i- - 1, + 1 -]. Let v~ be the microcanonical  state obtained by conditioning on 
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M,d 1/ . . . .  the magnetizat ion per site, taking values in C: for X a subset of 
.Q,,, we put 

v C'[S] = #{09ES:  M,,(09)/V,,E C } / #  {09~Q,,: M,,(09)/V,,~ C} (2.4) 

Let ),~, be the canonical state obtained by using the Bol tzmann factor 
exp[tM,,(09)]: for X a subset of s we put 

,' /Z  / , , [ X ] =  ~ exp[tM,,(m)] exp[tM,(09)] (2.5) 
~t~E ~ / ~ n E  ~2 n 

2. The Ising Model: Let C be a convex open subset of X =  
I - d ,  d ]  x [ - 1 ,  1]. Let v,C," be the microcanonical  state obtained by con- 
ditioning on the pair (U,,/V,,, M,/V,,) taking values in C: for X a subset 
of .(2,,, we put 

vC[S  ] = # {09~ X: ( U,,(09)/V,,, M,,(09)/V,,)E C} 
# {09 ~ f2,, : (U,,(09)/V,,, M,,(09)/V,,) ~ C} (2.6) 

Let ),~, be the canonical state obtained by using the Boltzmann factor 
expEtt U,(09) + t2M,,(09)], where t = (tt ,  t2): for S a subset of 12,,, we put 

Z, ,~ • exp[t~ U,,(09) + t2M,,(09) ] 
7~'[S] - Z .... n. exp[ t ,  U,,(09) + t2M,,(09)] (2.7) 

3. The Curie-Weiss Model." Let C be an open subinterval of 
X =  [ - 1 ,  + 1]. Let v,C," be the microcanonical  state obtained by condi- 
tioning on M,,/V,,, the magnetizat ion per site, taking values in C: for X a 
subset of s'2,,, we put 

X:,,, ~ s: M,(,,,)/r, ~ c'l exp[aM,,(09 }2/2 V,,] 
v ~ [ Z ]  (2.8) 

- XI .... n,,:M,,o,~,,,~c~ exp[aM,,(09)2/2V,,] 

where a is a positive real number.  Let ";,~, be the canonical state obtained 
by using the Bol tzmann factor exp[tM,,(09)]: for X a subset of s we put 

X,,~x exp[tM,(09)  + aM,,(09)2/2V,,] 
),~, [X]  - y .  ~ n,, exp [ tM,,(o9 ) + aM,,(09 )'-/2 V,, ] ( 2.9 ) 

The three models have certain features in common  which it is worth 
abstracting: 

�9 For  n/> 1, we have a reference measure p,, defined on the subsets of 
the finite set s in the first two models, we have 

p,,[S] = #{09EZ}  (2.10) 
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while in the third we have 

p,,[X] = ~ exp[aM,,(og)2/2V,,] (2.11) 
toE2.- 

" We have a scale, a sequence Vo : = { V,, }, ~> 1 of positive numbers 
diverging to + ~  as n ~ ~ ;  in all three models we take V . =  IA,,I, the 
number of lattice sites in A. .  

�9 In each example,  the microcanonical  states are obtained by condi- 
tioning the reference measures; to do this, we use functions T,,: s ~ X 
taking values in a compact  subset X of a Euclidean space E =  R ~ (k >~ 1 ): 
in the first and third examples, 

T,,(co) : =  M,,(co)/V,, (2.12) 

X =  [ -  1, 1 ] and k = 1 ; in the second example, 

T,,(o9) : =  (U,,(co)/V,,, M,(w)/V,,) (2.13) 

X =  I - d ,  d ]  x [ -  1, 1] and k = 2. Condit ioning is achieved by choosing a 
convex open subset C of X and restricting to those configurations co for 
which T,,(o~) E C; the set 

{m ~ s T,(CO)~C} (2.14) 

is sometimes called an energy shell in s 

�9 Both the microcanonical and the canonical states have densities 
C with respect to the reference measures: the microcanonical state v,, can be 

written with the aid of the function 

as 

o~,c,(m) = 1 T, ; 'c (~) /p . [  T,T ' C ]  (2.15) 

a s  

~,;,[dco] = ~;,(oJ) p,,[dco] (2.18) 

Here we have made use of  the inner product  <., - > defined on X by 

< t,.V. > " =  f i x  I "4" " '"  "l- t k X  k (2.19) 

vC[d~]  = ~,,c(r p,, I d a ]  (2.16) 

The canonical state 7~, can be written with the aid of the function 

ot~,(oo)=exp(V,,<t, T,,(o3)>)/I_ exp(V,,<t, T,,(m) > ) p,,[dm] (2.17) 
I ' S Z  n 
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3. T H E  I N F O R M A T I O N  G A I N  

We recall the definition of the information gain (also known as the 
relative entropy, a name we avoid because 'entropy'  has become over- 
worked). 

Def in i t ion  3.1.  Let 2~ and 22 be probability measures on a space 
f2; the information gain o~(). t ]2_,) of 2~ with respect to 2_, is given by 

~(2,122)  :=  {~lnh(oo)).,[&o],oe, ifotherwise2,[do)]=h(og)22[do93(3.1) 

Using (2.16) and (2.18), we have 

~(vCly;,)= ~ [ ln~C(oa)- ln~,(oa)]~, ,c(co)p, , [o9]  (3.2) 
~o E -Qn 

where the integral in (3.1) becomes a sum because the reference measure p,, 
is discrete. In this case, we have 

IIv~-y~,llrv-- Y'. Ic~(o~)-=~,(co)l p,,I-o)] (3.3) 
to E-Qn 

The total-variation distance between two measures is related to the infor- 
mation gain by the Kemperman-Pinsker  inequalityl~5'-'5~: 

2~(/~ I v)/> II~ - vii ~rv (3.4) 

This inequality is the key to using the information gain to prove the equiv- 
alence of ensembles. This is seen most clearly when the canonical state y~, 
is a product state; this is the case in our first example, the paramagnet. 

We consider v c the restriction to a subset A of A,,c7/a of the 
microcanonical state ~,c,,. For  the paramagnet,  the canonical state y,,' is a 
product  measure; this has two important  consequences: 

1. The restriction of y~, to A c A,, is independent of n and we denote 
it by y~. 

2. If A~ and A z are disjoint copies of A such that z l twA,_~A, , ,  then 

' " ">-  " ) + , '  
[ t l . ' J l ~ d 2 l ) ' J l ~ d 2  j ~ "  *) 'JI , - ? 4 ' )  ( 3 . 5 )  

but 

so that 

(3.6) 

~(v,C, I Y;,)/> L v,,/I A IJ o~(v,C,i~ lTt ) (3.7) 
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where LxJ denotes the integer part  of x. Hence 

1 
~C t ,lim_~_ v,,77-" ~ ( ~  ,, L~ ,) = 0 (3.8) 

implies that 

lim JC'(,,,c,:j 172,) = 0 (3.9) 

By (3.4), this implies that 

IIv~Sj-"' I,~ Tv ~ 0  (3.10) 

and, by (3.3), the density c~,,.jc of the restriction of the microcanonical  state 
to the finite set A converges to the density ct' of the canonical state J 

associated with the set A. So, for the paramagnet ,  Gibbs '  'general theorem'  
holds provided we can prove (3.8), the vanishing of the specific information 
gain. 

In our second example, the Ising model, the canonical state ),~, is not 
a product  measure, because of the interaction between spins on neighbor- 
ing sites and the subadditivity argument  fails; this can be got around,  using 
the techniques of  Sullivan (3~ and Preston. (261 There is a second difficulty in 
the case of the Ising model: at (3.6), we exploited permutat ion invariance 
(exchangeability); this no longer holds and we must exploit the translation 
invariance instead. However,  the microcanonical  state v, c associated with 
the finite box A,, is not translat ion-invariant;  the way out is to replace it 
by its spatial average. For  each j E Z  a we have the action of 7/'1 on itself 
given by i--* i+j ,  i t  Ea; this lifts to 0i : /2 ~ I2 given by (O~co)(i)=co(i-j) 
for each configuration co E/2. We choose some fixed configuration r/e.Q 

q q and define a map  b;l' s ~ (2 by b,,(co)"= q(i)i f  i ~ A ,  and b,(co):= co(i) 
if i t  A, ;  the image measure v,C, "'" = vCo,, (h'],) ~ is defined on (2 and we define 
the averaged microcanonical  state i ; c "  by t l  

1 
-c.,, S, f f . ' ,oo?'  (3.11) 
Vn : - -  gn ie.4. 

[ I f  in (2.3) we sum over all pairs ( i , j )  of nearest neighbor sites which 
have a nonempty  intersection with the cube A,,, then the measure vC,, "'" is 
the usual Gibbs  measure in A,, with boundary  condition q; our results 
apply to this case.] For  the Ising model and, indeed, for any model with 
translat ion-invariant  summable  potentials, we are able to prove the 
following. 
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Condition (3.8). the vanishing of the specific information gain, hnplies that 
any. weak limit point of the sequence { ~c.,,, ~ ,, >~ ~ is a Gibbs state with respect 
to the specification associated with {7~,},,~>a. 

This is our version of the 'general theorem' of Gibbs in the interacting 
case; a full proof  will be given elsewhere, c2~ Here we concentrate on 
obtaining a criterion to determine when, given a sequence {vC},,~>, of 
microcanonical states, we can choose t so that the specific information gain 

1 c t ,lira ~ ~,, acts(, ,, I),,) (3.12) 

vanishes; we will illustrate the use of our criterion with our three examples. 
The key to the derivation of our criterion is the following observation: 

the density c~,,c o)C the microcanonical state and the density c~,; of the canonical 
state are both functions o]" T,. This enables us to express the information 
gain as an integral over the space X by using the change-of-variables for- 
mula: let T: I2 ---, X be an X-valued random variable and let ~ = P o T -  ~ be 
the image law of P under T defined by ~ [ B ] = P [ { o ) :  T(~o)EB}];  the 
random variable f :  X---, R is K-integrable if and only i f f o  T is P-integrable 
and then 

f ( J ' o  T)(co) P [ & o ]  = fx f ( x )  K [ d x ]  (3.13) 

Define the distribution Nil,, of T,, under p,, by M,, :=  p,,o T,;-'; we have 

,c M, , [ .n  C] 
~,, o T, , '  = = M,,[.  I C]  (3.14) 

~ , , [ c ]  

, _ ,  M , ' , [ . ]  
7,, ~ T,, _ ,  t ~ , [ X ]  M, , [ . IX]  (3.15) 

change-of- where M , ' [ d x ] : = e x p ( V , , < t , x > ) ~ , [ d x ] .  Thus, using the 
variable formula, we have 

o~(v,,~ I ~'~,) = ~(M, , [ -  IC] I ~ , [ .  IX] ) (3.16) 

We see that the density of M,,[.  l C]  with respect to M,, is 1 c(" ) /M,,[C] and 
the density of M ~, [ .  ] X]  with respect to M,, is exp( V,, < t, �9 > )/exp( V,, p,,(t)), 
where p,,(t) is defined by 

exp( V,, p,( t))  :=  J'x exp( V,<t, x>) M,Edx]  (3.17) 
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It follows, using (3.16), that 

l ~(~'~1 ~'~,) ~c<t, x 
Vn 
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1 In M,, [C]  (3.18) ~,,[dxl C] + p,,(t)- v,--, 

It remains to evaluate the limits as n ~ ~v of each of the three terms on the 
right-hand side of (3.18). To do this, it is necessary to review some results 
relating to the Ruelle-Lanford function129'tvl; proofs can be found in ref. 18. 

4. THE RUELLE-LANFORD FUNCTION 

We need to examine the behavior as n--* ~ of the measures on X 
defined in Section 2. Since ~,,, p,,, and 7",, play no part in the considera- 
tions of this section, it is best to start afresh. Let N o : =  { ~ , , } , , ~  be a 
sequence of finite positive measures on X, a compact  convex subset of 
E =  [~k. Let V o be a scale; define set functions m,,, nj, 67 on subsets of X by 

1 
m,,[B] : =  - -  In ~ , , [ B ]  (4.1) 

Vn 

~n[B] : =  lim infm, , [B]  (4.2) 

n-z[B] := lira supm,,[-B] (4.3) 

The following properties are straightforward consequences of the defini- 
tions: 

~21[B] ~< ffl[B] for all B (4.4) 

t_n and if7 are increasing (4.5) 

The next property is an abstract version of the Principle of the Largest 
Term, well known in statistical mechanics (see, for example, Huang**31). 
Since it is central to our development, we give a proof. (For a, b ~ •, we 
denote the maximum of a and b by a v b.) 

Lemma 4.1. On ~(X) ,  we have 

th[ B I w B2] =ffT[Bj]  v fill-B2] 

Proof. F o r j = l , 2 ,  we have 

~ , , [ s j ]  ~< ~ , , [8 ,  u &,]  ~ ~ , , [ 8 , ]  + ~ , , [& , ]  

(4.6) 

(4.7) 
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so that 

M,,EB,] v ~,,[B2]<~,,EB, wBz]<~2~,,EB,] v I~,,[B2] (4.8) 

It follows that 

rheBi w Bz] = lim sup(m,,[Bi] v m,,[B2]) (4.9) 
n ~  ~c 

But for each pair {a,,},,~ 1, {b,,},,>~l of sequences of real numbers, we have 

lim sup(a, v b,,) = (lira sup a,,) v (lim sup b,,) (4.10) 

Thus (4.6) follows from (4.9) and (4.10). �9 

Define functions _~,/~ on X as follows: 

~(x) := inf{,__n[-G]: G open, G~x} (4.11) 

/~(x) := inf{rhEG]: G open, G~x} (4.12) 

The following properties are direct consequences of the definitions: 

and /~ are upper semicontinuous functions (4.13) 

,h[G]/> sup fi(x), G open (4.14) 
. , , 'e G 

nj[G] ~> sup _/.t(x), Gopen (4.15) 
.,:,~ G 

The lower bound (4.14) for rh on open sets is rarely used; of greater impor- 
tance is the following upper bound for ,h on compact sets, a consequence 
of the Principle of the Largest Term (4.6): 

t~+[K] ~< sup/~(x), K compact (4.16) 
.~-e K 

If /~(x)=u(x)  for all x~X,  we say the Ruelle-Lanford function 
(RL-function)/~ exists for the pair (1~ o, Vo) and is given by 

It(x) := _p(x)=/~(x) (4.17) 

When the RL-function exists, the bounds (4.15) and (4.16) can be restated 
a s  

n-7[K] ~< sup/t(x), K compact (4.18) 
.~,'~ K 

,__n[G]/> sup/~(x), G open (4.19) 
.v*Z G 
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When (4.18) and (4.19) hold, we say (following Varadhan ~3~ that a large- 
deviation principle (LDP)  holds with rate function I =  -la for the pair 

(~o, Vo). 
This means that the sequence m o of set functions m,,, defined at (4.1), 

converges to the set function 

B~-+ sup ls (4.20) 
.~'~ B 

in exactly the same sense that a sequence of probability measures ~11 o 
converges to a measure '~x in a weak law of large numbers (remember that 
X is assumed to be compact).  For  special sets, convergence takes a more 
familiar form: for example, i f  X is compact, C is a nonempty open convex 
subset o f  X, and the RL-function I~ exists and is concave, then 

sup ~l(x) = ~n[C] = ff1[C] = sup/a(x) 
.x'E C .~'~ C 

and the bounds (4.18) and (4.19) yield 

(4.21) 

lim m, , [C]  = sup/~(x) (4.22) 
?t'E 

This result enables us to deal with the third term in (3.18). 

R e m a r k s .  

�9 We have given ~ the name "Ruelle-Lanford function" because, in 
the setting of a lattice gas with translation-invariant summable potentials, 
our definition coincides with the definition of entropy given by Ruelle 1'-91 
and Lanford. I ~7~ 

�9 We reserve the name 'entropy'  for those RL-functions which are 
concave. Lanford's proof  of the existence of the entropy in the case of 
the lattice gas yields also its concavity. The Curie-Weiss model provides an 
example of  an RL-function which is not concave. 

�9 Ruelle and Lanford understood that giving precise meaning to 
Boltzmann's formula 

S = k In W (4.23) 

relating the entropy S of a macroscopic equilibrium state to the number  W 
of corresponding microscopic states, is the same problem as that of making 
sense of the convergence of the sequence mo to the set function (4.20); by 
so doing, they introduced a new technique in the theory of large deviations 
(compare Bahadur and Zabel<21). 
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In the models we are considering, the RL-function exists and the 
existence is established in a variety of ways: 

1. The Paramagnet: The measure M ~ is defined by 

M~ := #{toeg2,,:  M,,(og)/V,,eB} (4.24) 

for B c [ - -  1, 1 ]. Using Stirling's formula and some elementary analysis, we 
can prove that the RL-function po exists and is given by 

p~ = In 2 - �89 - x) - �89 + xj (4.25) 

where 

t 
0, x = 0  

v(x) := x l n x ,  0 < x < l  

[.0, x = 1 

(4.26) 

2a, The Ising Model (d=  1): The measure M~, is defined by 

M~,[B] := #{toel2,,:(U,,(co)/V,,,M,,(tn)/V,,)eB} (4.27) 

for B c [ - 1 ,  1] x [ - 1 ,  1]. Using the combinatorics in Ising's original 
treatment, 1'4~ Stirling's formula, and some elementary analysis, we can 
prove that the RL-function p l exists and is given by 

In 2 -  �89 + x ~ ) +  �89 + x 2 ) +  �89 - x 2 )  

p ' (x j ,  x2)= - � 8 8 1 8 8  x e A  (4.28) 

-oo ,  xCA 

where 

{ 1 - x l  ~<x~ ~<~s (4.29) d "= x e X :  --l  <~x, <~ l, ~ - -  . 

The details of this calculation will be given in ref. 21; compare ref. 10. 

2b. The Ising Model (d>~ 2): The measure M~( is defined by 

Md[B] := # {we.Q,,: ( U,,( og )/ V,,, M,,(co)/V,,)eB} (4.30) 

for B c [ - d , d ] x [ - l ,  1]. For d>~2, we no longer have the benefit of 
explicit expressions for the RL-function and must rely on the general 
arguments which apply to the lattice gas with translation-invariant sum- 
mable potentials. We sketch these here; details are given in ref. 20. Using 
standard methods, we prove that /2 and _// are independent of boundary 

822/77/1-2-28 



410 Lewis e t  al. 

conditions. Let B~.(x) be an open ball of radius e and center x in X; we 
prove, in the case of free boundary conditions, the following result: 

Let x, x', x" e X satisfy x'  + x" = 2x and let 0 < e' < e; then 

2Ln[B~.(x)] >>, _m[B~,(x')] + r~[Bc(x")]  (4.31) 

From this and the independence of 17 and U on the boundary conditions, 
we deduce that: 

The RL-function II 't exists for  the pair (M a, Vo) and is concave on X. 

3. The Curie-Weiss Model." The measure ~ c w  is defined by 
el 

~,c, w [dx] = exp( V,, g (x) )  ~ ~  (4.32) 

where g(x)  := ax2/2. We shall prove in Section 6 that the RL-function/a cw 
exists and is given by 

/~CW(x) =/a~ + ax2/2 (4.33) 

Notice that x ~/~CW(x) is not concave for a > 1/2. 

5. C O N C E N T R A T I O N  OF M E A S U R E S  

Our next application of (4.16) is to the concentration o f  measures. The 
results of this section will enable us to deal with the first term on the right- 
hand side of (3.18). Let I~ o be a sequence of probability measures; if I~o 
converges weakly to a Dirac measure 6,. at some point x e X ,  we say ~ o  
obeys a weak law of large numbers (WLLN). In the absence of a first-order 
phase transition, a WLLN holds in the grand canonical ensemble. We 
require a substitute for a WLLN which holds regardless of phase trans- 
itions. We say that a sequence I~ o of probability measures on X is even- 
tually concentrated ol7 a set A if, for each open neighborhood G of A, we 
have 

lim I ~ . [ G ]  = 1 (5 .1)  

We shall need the following result. 

Lemma 5.1. Let I~ o be a sequence of probability measures which 
is eventually concentrated on a set A; if f :  X--* • is lower semicontinuous 
and bounded below on X, then 

inf f(x)~<lim in f f  f ( x )  ~ , , [ d x ]  (5.2) 
. X ' E A  / 1 ~ c O  ~X 



Equivalence of Ensembles for Lattice Systems 411 

[There is an obvious complementary upper bound; together they yield the 
usual characterization of the WLLN in terms of bounded continuous func- 
tions when A reduces to a single point: if A = {x} and IMI o is eventually 
concentrated on A, then I~ o converges weakly to the Dirac measure 6x.] 
The function/L defined at (4.12) for the pair (~11 o, Vo), enables us to deter- 
mine a concentration set for the sequence Mo. (How useful it is depends on 
how well we have chosen the scale Vo.) Notice that, for probability 
measures, the function /~ is bounded above by zero; in fact, it always 
attains this bound and the set on which it attains it is a concentration set 
for Mo. Let N~ be the set defined by 

Nl~ := { x e X : ~ ( x ) = O }  (5.3) 

L e m m a  5.2. Let Mo be a sequence of probability measures and Vo 
a scale. Then: 

(a) N~ is compact and nonempty; 

(b) The sequence I~ o is eventually concentrated on N~. 

The proofs of both (a) and (b) make use of the bound (4.16). 
We are now in a position to deal with the first term on the right-hand 

side of (3.18). Let C be an open convex subset of X; using convexity theory, 
we can prove that i f  the RL-function p exists for  the pa#" ( ~ o ,  Vo) and is 
concave, then the RL-function Itc for  the pair (1~o[. I C], Vo) exists and is 
given by 

# c ( x )  = ~l~(x) - sup.,.~ c #(Y), x �9 C (5.4) 
t - D ,  xEX~C 

Applying Lemma 5.2 to the sequence ~ o [ "  1 C] of probability measures, we 
see that the sequence I~o[-I C]  is eventually concentrated on the set 

X e  : = N~, c = {x �9 X: It(X) = sup #(y) } 
y e  ~' 

(5.5) 

so that, by Lemma 5.1, we have 

lim,, - inf~ ic. <t, x> M,,[dx] >~infxe <t, x> (5.6) 

Remark. As already mentioned, when the RL-function is concave, p 
is interpreted as the thermodynamic entropy; Lemma 5.2 and formula (5.5) 
give an expression of the Maximum Entropy Principle. 
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6. V A R A D H A N ' S  THEOREM 

It remains to deal with the middle term on the right-hand side of 
(3.18) and to compute the RL-function for the Curie-Weiss model; for 
both of these, we need yet another consequence of the Principle of 
the Largest Term: Varadhan's Theorem in the case when the space X 
is compact. Let g : X ~  R be continuous; define the measure M, g by 
~;~,[dx] : = exp( V, g(x))M,,[dx]; let IV, Lt 2 be the upper and lower func- 
tions determined by the pair ( ~  g, Vo); they are related to l~ and ~ as follows: 

fig(x) = fi(x) + g(x) (6.1) 

OX(x) = E(x) + g(x) (6.2) 

These relations are a consequence of the continuity of the function 
x~--~ g(x). We are now ready for our third application of the bound (4.16): 

T h e o r e m  6.1. Suppose that the RL-function Ft exists for the pair 
(~o ,  Vo) and that the function x ~ g(x) is continuous; then: 

The RL-function ll x exists for the pair ( ~ g ,  Vo) (a) 

(b) 

(c) 

The pair (M~, Vo) obeys an LDP: 

rhe[K] ~< sup/~X(x), 
. r e  K 

LnXEG] t> sup ~LX(x), 
. x ' e G  

i ~x is given by 

#X(x)= g(x) +12(x) 

K compact (6.3) 

G open (6.4) 

(6.5) 

(d) If, in addition, the space X is compact, then 

' f ,,lim_ - V--~ In x exp(V,g(x))  M,,[dx] =sup(g(x)+iL(x)).,.~ x (6.6) 

Proof. Both (a) and (c) follow from (6.1) and (6.2); (b) follows from 
(a) and (4.18) and (4.19). To deduce (d) from (c), note that X is both 
compact and open as a topological space so that, from (6.3) and (6.4), we 
have 

lim, ~sup.~_ ~,, In exp( V,, g(x)) M,,[dx] 

~< sup #X(x) 
x e  X 

~< lim i n f - -  In exp(V, g(x)) M,[d x ]  �9 (6.7) 
n ~ ~ r n .V 
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Our first application is to the Curie-Weiss model; it follows from the 
existence of the RL-function/t o for the pair (N ~ Vo) and the continuity of 
the function x~ax2 /2  that the RL-function /~cw exists for the pair 
(1~o cw, Vo) and is given by 

/~CW(x) =/~~ + ax'-/2 (6.8) 

Our second application is to the remaining term in (3.18); recall that 
p,,(t) was defined at (3.17) as 

p,,(t) "= - - l n  exp( V,,<t, x ) )  M,,[dx] (6.9) 
g n  

Since x--* (t, x )  is continuous, it follows from (d) that ~ the RL-function 
I~ exists, then the grand canonical pressure defined by 

p(t) := lim p,,(t) (6.10) 

exists and is given by 

p(t) = sup( (t, x )  +/l(x)) (6.11 ) 
s e x  

We can write (6.11) as p ( t ) = ( - / a ) *  (t), where f *  is the Legendre trans- 
form of f :  

f* (y )  := sup((y,  x )  - f ( x ) )  (6.12) 
x E .V 

We are now ready to prove our criterion for the vanishing of the 
specific information gain. To state it, we define the set X' for t e R* by 

X' := {x~X: p( t )=  (t, x> +/~(x)} (6.13) 

T h e o r e m  6.2. Suppose that C is an open convex subset of the 
compact space X and that the RL-function /a exists for the pair (Mo, Vo) 
and that/~ is finite at some point of C; if Xc c X', then the specific informa- 
tion gain is zero: 

,limoo ~ ~~ 17'n)= 0 (6.14) 

Proof. By (3.18), we have 

.~(vc I ~,~,)= --~,, .~(r~,, I--I C]l~,',[. IXl) 

= - f  <t, y> ~, , [dyl  C] +m,',EX]-m,,[C] (6.15) 
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By (3.4), the left-hand side of (6.14) is nonnegative; by (5.6), (6.9), and 
(4.22), we have an upper bound: 

0-,.<lim sup . l -  Xt~(vCl?,~,)-,.< - inf (t ,  y ) + p ( t ) -  sup #(y) 
n ~ ~ V u .r ~ X C y E A'~ 

= sup { p ( t ) -  ( t , ) , )  - #(y)} (6.16) 
) ' e  XC 

If Xr ~ X', then 

sup { p ( t ) -  ( t ,  y ) - p ( y ) }  = 0  (6.17) 
y ~ XC 

(c) of Theorem 6.1, the RL-function of the pair 

and (6.14) follows. 

Remark. By 
( ~ [ ' 1 X ] ,  Vo) is p ( x ) +  ( t , x ) - p ( t ) ,  so that, by Lemma 5.2, the set X' 
is nonempty and is a concentration set for the sequence M~[-IX] of prob- 
ability measures. By (6.1 I), the grand canonical pressure p is the Legendre 
transform ( - # ) *  of - / a  and it is not difficult to show that X' is a subset 
of the subdifferential ap of p at t: 

X' cOp(t) := {x: p(t + s)>~ p(t)+ (s ,x) ,  Vs} (6.18) 

If, in addition, we have equivalence of ensembles at the level of thermo- 
dynamic functions in the sense that # ( x ) = - p * ( x )  as well as p ( t )=  
( - # ) *  (t), which is the case when # is concave, then we have equality: 
X'=Op(t). 

7. APPLICATIONS OF THE CRITERION 

To illustrate how Theorem 6.2 may be applied, we consider in turn the 
three models described above. 

1. Theparamagnet: Choose C=(c' ,c")c [ - 1 ,  1]; the RL-function 
/.t ~ exists for the pair (1~o, Vo ) and is given by (4.25) and the grand 
canonical pressure p(t) is given by 

p(t) = In 2 cosh t (7.1) 

c,  0~<c 

x * =  c ' < 0 < c "  (7.2) 

', c"~<0 

The set Xr = {x* }, where 
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and the set X ' =  {x,}, where 

x, = p'(t) = tanh t (7.3) 

Given C, we can find t* such that X e = X";  thus we have 

V~, ~,, (7.4) , l im ,ff(v,,Cl ,'* )=0 

2a. The Ishzg Model  ( d =  1): Choose C = (c'l, c~') x (c;_, c~); the RL- 
function/21 exists and is given by (4.28); since/~1 is strictly concave on the 
set A on which it is finite, the set Xc consists of a single point x* provided 
C contains at least one point at which/21 is finite. See Fig. 1. 

Since the RL-function /11 exists, it follows from (6.11) that the grand 
canonical pressure pl( t )  exists and is given by 

pl( t )  = sup( ( t ,  x )  +/~l(x))  (7.5) 
,~." E )t" 

Since/~1 is strictly concave on the set d on which it is finite, it follows from 
convexity theory (see ref. 28, for example) that p* is continuously differen- 
tiable on the set on which it is finite and the set X'  consists of the single 
point 

x, :=  grad p(t)  (7.6) 

-1 

0.s " ~  ~ 0 
- ~ -0.5 

Fig. 1. The entropy surface of the lsing model (d = 1 ) plotted against pair interaction energy 
per site (x)) and magnetization per site (x2). 
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Choosing t* to be the unique root of 

grad p(t)=x* (7.7) 

we have Xc = X", so that 

1 t*  lim - -  ~(v,Cly, ,  ) = 0  (7.8) 
n ~ ,~ V n 

Of course, in this case, p~(t) can be computed  explicitly; this is most easily 
done directly from its definition (6.10) using the transfer matrix method 
(see ref. 13, for example). This yields 

pl(tt, tz) = I n { e - "  cosh t 2 + (e -2' t  sinh 2 tz + e2") l/z } (7.9) 

2b. The Ising Model (d~>2): Using (4.31), we saw that  the RL- 
function tt d exists and is concave; however, in this case it is not strictly 
concave because there is a first-order phase transition (this was proved by 
Dobrushin  (5) and Griffiths (~z) independently) which manifests itself in a 
ruled patch R on the ent ropy surface. Because the grand canonical pressure 
is strictly convex, (6) this patch fits smoothly  into the entropy surface. In the 
case d =  2, the boundary  of the projection of the ruled patch on the X plane 
can be computed  using Onsager 's  formula for the spontaneous  magnetiza-  
tion, a proof  of which was published by Yang. (32) See Fig. 2. 

2 

1.5 

1 

0.5 

0 

-0.5 

-1 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Fig. 2. The projection R of the ruled patch in the entropy surface onto the X plane in the 
Ising model (d= 2). 
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Choose C =  (c'1, c';) x (c ' ,  c[) and suppose that the en t ropy/2a  is finite 
at some point of  C; the set X c is the line-segment {c'(} X[CE, C'~]c~R 
provided this is non-empty,  and reduces to a single point {x*} otherwise. 
The set X'  is the single point {x,}, where 

x, :=grad p(t) (7.10) 

for values of  t for which p is differentiable, and is the line-segment 
{Op(t)/Otl} x [ - m * ( t ) ,  m*( t ) ] ,  where m*(t) is the spontaneous magnetiza- 
tion, otherwise. We can always choose t* such that  X c c X ' *  and 

1 
v. ly,, ) =0  (7.11) lim ~ , , ~ (  c ,* 

n ~  oz., 

This follows because, as a consequence of the concavity of/2,  we have 
/2(x) = - p * ( x )  as well as p( t )=  ( - /2 )* ( t ) .  

3. The Curie-Weiss Model: By (6.8), the RL-funct ion/2cw exists; in 
the case a ~ 1/2,/2cw is strictly concave and the analysis proceeds as in the 
case of  the paramagnet ,  establishing that t* can be chosen so that 

lim 1 )~'(vC] y~,') = 0 (7.12) 

However,  when a >  1/2, the RL-function is no longer concave and attains 
its max imum at two distinct points, x,  and - x , , ,  where x ,  is the positive 
root of  

tanh 2ax = x  (7.13) 

Choosing C to be an open interval, we see that the set Xc consists of one 
or two points contained in the closed interval C. The set X '  is, for t > 0, a 
single point in the interval (x,,, 1); for t < 0, a single point in the interval 
( - 1 , - x a ) ;  for t=O, the pair of points { - X o ,  Xo}. In any case, X '  is a 
subset of ( - 1 , - X o ] W E x o ,  1) and Xc is a subset of C, so that, if 
C c ( - X o ,  Xo), there is no value of t for which the condition X c c X '  is 
satisfied, since the concentrat ion sets X '  and Xc are disjoint for all t; one 
can show that no limit point of a sequence of microcanonical  measures is 
a limit point of a sequence of grand canonical measures. 

8. C O N C L U S I O N  

We have shown how the criterion of Theorem 6.2 for the vanishing of 
the specific information gain is satisfied in the model of a paramagnet  
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and in the Ising model with d =  1 and d>~ 2. We have demonstrated in the 
case of the Curie-Weiss  model that nonconcavi ty  of the RL-function can 
prevent its being satisfied. In general, for a lattice gas with translation- 
invariant  summable  potentials, the RL-function # exists and is concave and 

we refer to it as the entropy function; the following result holds: Let  C be 
an open convex neighborhood o f  a point at which/1 is finite; then there exists 
t* such that X c c  X "  so that 

1 C ,lira ~ ~(v,, I )'~,')= 0 (8.1) 

Using the methods of refs. 30 and 26, we can use this result to prove 
that the entropy p can be used to f ind  a value t* (generalized chemical poten- 
tial) such that any weak limit o f  the sequence {q,,c},,>~ l is a Gibbs state with 
respect to the specification determined by {~,~," },, >1 i. 

The existence of a t* for which X e c X "  follows because, as a con- 
sequence of the concavity of p, we have # ( x ) = - p * ( x )  as well as 
p ( t ) = ( - # ) *  (t); these relations together constitute the equivalence of 
ensembles at the level of thermodynamic  functions. It is in this sense that 
in the classical lattice gas, equivalence o f  ensembles holds at the level o f  
states whenever it holds at the level o f  thermodynamic functions. Detailed 
proofs of these statements will be given in ref. 20. 
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